A Note on Decomposing a Square Matrix as Sum of Two Square Nilpotent Matrices over an Arbitrary Field
نویسندگان
چکیده
Let K be an arbitrary field and X a square matrix over K. Then X is sum of two square nilpotent matrices over K if and only if, for every algebraic extension L of K and arbitrary nonzero α ∈ L, there exist idempotent matrices P 1 and P 2 over L such that X = αP 1 - αP 2.
منابع مشابه
Invertible and Nilpotent Matrices over Antirings
Abstract. In this paper we characterize invertible matrices over an arbitrary commutative antiring S with 1 and find the structure of GLn(S). We find the number of nilpotent matrices over an entire commutative finite antiring. We prove that every nilpotent n×n matrix over an entire antiring can be written as a sum of ⌈log2 n⌉ square-zero matrices and also find the necessary number of square-zer...
متن کاملOn the nil-clean matrix over a UFD
In this paper we characterize all $2times 2$ idempotent and nilpotent matrices over an integral domain and then we characterize all $2times 2$ strongly nil-clean matrices over a PID. Also, we determine when a $2times 2$ matrix over a UFD is nil-clean.
متن کاملOn minimal degrees of faithful quasi-permutation representations of nilpotent groups
By a quasi-permutation matrix, we mean a square non-singular matrix over the complex field with non-negative integral trace....
متن کاملOn the sum of Pell and Jacobsthal numbers by matrix method
In this paper, we define two $n$-square upper Hessenberg matrices one of which corresponds to the adjacency matrix of a directed pseudo graph. We investigate relations between permanents and determinants of these upper Hessenberg matrices, and sum formulas of the well-known Pell and Jacobsthal sequences. Finally, we present two Maple 13 procedures in order to calculate permanents of t...
متن کاملA Family of Determinants Associated with a Square Matrix
We associate with a matrix over an arbitrary field an infinite family of matrices whose sizes vary from one to infinity; their entries are traces of powers of the original matrix. We explicitly evaluate the determinants of matrices in our family. The work is motivated by applications to graph spectra. 1. A two-parameter family of matrices Let K be a field, and let G be a square matrix of arbitr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013